If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x-10+3x^2=0
a = 3; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·3·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*3}=\frac{-12}{6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*3}=\frac{10}{6} =1+2/3 $
| (e+7)/2=12/2 | | 6a+21=3 | | 3x+6-9x=-36 | | (e+3)/7=13 | | 6a+21=-3 | | (3w+6)=-12 | | 5q-21=q+3 | | 7/35=3/a | | 2(x-6)=3(18-3x) | | (e+4)/8=(e-6)/10 | | 1+5m=-5+4m | | 6(e+3)=8(e-7) | | -12k=-108 | | 7(e+4)=5(e+6) | | -3=n/18 | | n/8=-5/8 | | -2(w-8)=-5w+40 | | 2y+11=31-3y | | -1/6=n/18 | | -8(3+5k)=-184 | | -4=-14+a | | 132=-6(4n+6) | | 5(u-8)-7u=-28 | | 109=-5+3(3+5r) | | 25z=1/5 | | -91=-5(3n-1)+3n | | 14=1/2(r+8) | | -1+5(8+4v)=159 | | 1/2(x=6) | | 3+3-6x=-18 | | -145=-5(6x-1) | | -6-3(4m+1)=-105 |